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Abstract. The dynamic slope scaling procedure (DSSP) is an efficient heuristic algorithm
that provides good solutions to the fixed-charge transportation or network flow problem.
However, the procedure is graphically motivated and appears unrelated to other optimization
techniques. In this paper, we formulate the fixed-charge problem as a mathematical program
with complementarity constraints (MPCC) and show that DSSP is equivalent to solving
MPCC using Lagrangian relaxation with subproblem approximation.
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1. Introduction

Consider an optimization problem of the form:

FC: min
n∑

j=1
fj (xj )

s.t. Ax =b,

xj �0, ∀j =1, . . . , n,

where

fj (xj )=
{

0 if xj =0,

sj + cjxj if xj >0

and cj � 0 for each j. Although it is more general to assume that s =
(s1, . . . , sn)

T �0 and sj >0 for some j, we assume for simplicity that sj >0
for all j. (When s = 0, FC reduces to a linear program, a problem that can
be solved efficiently by the simplex algorithm.) When A is a node-arc inci-
dence matrix of a network and b is a vector of valid exogenous amounts
of flows into and out of each node, FC is known in the literature as
the fixed-charge transportation or network flow problem (see, e.g., Balin-
ski, 1961; Kuhn and Baumol, 1962; Murty, 1968) and has applications in,
e.g., network design, plant location, and production scheduling. Many have
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proposed exact (see, e.g., Cabot and Erenguc, 1984; Palekar et al., 1990;
Lamar and Wallace, 1997) and heuristic (see, e.g., Diaby, 1991, Khang and
Fujiwara, 1991; Kim and Pardalos, 1999) algorithms to solve the problem.

Among the heuristics, the dynamic slope scaling procedure (DSSP)
proposed by Kim and Pardalos (1999) works well in practice. Since its
introduction, there have been several extensions of DSSP to solve, e.g.,
piecewise linear network flow problems (see, Kim and Pardalos, 2000a, b)
and the fixed-charge multi-commodity network flow problem (see, Eksio-
glu et al., 2002). Several (e.g., Bai et al., 2003) have also used it in other
applications.

On the surface, DSSP appears unrelated to other optimization tech-
niques and its principal idea is graphically motivated. Our goal in this
paper is to establish relationships between DSSP and Lagrangian relaxa-
tion. More specifically, we formulate FC as a mathematical program with
complementary constraints (MPCC) and show that DSSP is equivalent
to solving MPCC using a version of Lagrangian relaxation that solves
the subproblem approximately and uses Karush–Kuhn–Tucker (KKT) mul-
tipliers from MPCC instead of subgradients to find improved solutions.
In nonlinear programming, the existence of KKT multipliers at a given
point typically indicates that it is either locally or globally optimal when
some constraint qualifications hold. In our case, the MPCC formulation
of the fixed-charge problem does not satisfy the Mangasarian-Fromovitz
constraint qualification (MFCQ) (see, e.g., Luo et al., 1997). This renders
the set of KKT multipliers unbounded at points that are neither local nor
global optimal to MPCC (see Gauvin, 1977). However, some KKT multi-
pliers at non-optimal points do provide information that leads to improved
solutions (see, e.g., Fletcher et al., 2002; Fletcher and Leyffer, 2002).

For the remainder, Section 2 reviews a version of DSSP for FC and Sec-
tion 3 formulates the fixed-charge problem as a MPCC and discusses its
properties. Section 4 presents a Lagrangian relaxation technique for MPCC
and shows that the algorithm is equivalent to DSSP.

2. Dynamic Slope Scaling Procedure

For reference in subsequent sections, we state a version of DSSP for FC.
(See Kim and Pardalos, 1999, for other versions.) To motivate DSSP, Kim
and Pardalos (1999) observe that the objective function of FC is concave.
Thus, there must exist an extreme point of the feasible region that is opti-
mal to FC (see, e.g., Bazaraa et al., 1993). Furthermore, such an extreme
point must be optimal to a linear program of the form: min {πT x :Ax =b,
xj � 0, j = 1, . . .,n} for some cost vector π . To find the correct π , DSSP
solves the linear program with an initial cost vector π0 and uses an optimal
solution to revise π0 and obtain an updated cost vector π1. Then, DSSP
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Figure 1. The slope calculation in Step 2 of DSSP.

resolve the linear program with π1 and again uses an optimal solution
to revise π1 and obtain an updated cost vector π2. This process contin-
ues until the difference between optimal solutions to two consecutive lin-
ear programs is sufficiently small. Mathematically, DSSP can be stated as
follows:

Dynamic Slope Scaling Procedure

Step 0: Set x0 =0, k = 1, and π1
j = cj , for j =1, . . ., n. Go to Step 1.

Step 1: Let xk = argmin {xT πk: Ax =b, xj �0,∀j}. If
∥
∥xk −xk−1

∥
∥�ε, stop

and xk is an approximate solution to FC. Otherwise, go to Step 2.

Step 2: Set πk+1
j =

{
cj + sj

/
xk

j if xk
j >0

πk
j if xk

j =0
and k =k +1. Go to Step 1.

When xk
j >0, the update choice of πk+1

j in Step 2 is the slope of the line

that passes through two points, the origin and
(
xk

j , fj (x
k
j )

)
(see Figure 1).

Otherwise, the new slope πk+1
j is the same as the current slope, πk

j . If
x�

j =0 for all �� k, this update choice implies that πk+1
j equals cj , the ini-

tial slope. On the other hand, when x�
j >0 for some � < k, πk+1

j is the slope
from the most recent iteration in which x�

j >0 for some � < k.

3. Mathematical Program with Complementarity Constraints

Let yj be a binary (decision) variable indicating whether xj is allowed to be
positive. Then, FC is equivalent to the following mathematical program:



124 S. LAWPHONGPANICH

MPCC : min
n∑

j=1
yj

(
sj + cjxj

)

s.t. Ax =b,

xj �0, ∀j =1, . . . , n,

0�yj �1, ∀j =1, . . . , n,

xj (1−yj )=0, ∀j =1, . . . , n.

For each j, the constraint xj (1 − yj ) = 0 ensures that yj is binary. When
xj > 0, yj must equal one to make the expression xj (1 − yj ) equal zero.
Similarly, when xj = 0, yj must be zero to minimize the objective func-
tion because sj > 0. The theorem below shows that MPCC and FC are
equivalent.

THEOREM 3.1. The FC and MPCC are equivalent, in that an optimal
solution to one problem is also optimal to the other.

Proof. Let x∗ and (x ′, y ′) be an optimal solution of FC and MPCC,
respectively. Because x∗ is optimal to FC, the following must hold.

n∑

j=1

fj (x
∗
j )=

∑

j :x∗
j >0

sj + cjx
∗
j �

∑

j :x ′
j >0

sj + cjx
′
j

=
n∑

j=1

y ′
j (sj + cjx

′
j ), (3.1)

where the inequality follows because x ′ is feasible to FC. On the other
hand, the following must also hold because (x ′, y ′) is optimal to MPCC.

n∑

j=1

y ′
j (sj + cjx

′
j )�

n∑

j=1

y∗
j (sj + cjx

∗
j )=

∑

j :x∗
j >0

sj + cjx
∗
j

=
n∑

j=1

fj (x
∗
j ), (3.2)

where y∗
j = 1 if x∗

j > 0. Then (3.1) and (3.2) imply that
∑n

j=1 fj (x
∗
j ) =

∑n
j=1 y ′

j

(
sj + cjx

′
j

)
. Thus, FC and MPCC are equivalent.

To characterize a class of solutions to MPCC, consider the following
restricted minimum cost flow problem associated with a binary vector y:
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RF[y] : min
n∑

j=1
cjxj

s.t. Ax =b,

xj �0, ∀j :yj =1,

xj =0, ∀j :yj =0.

We refer to an optimal solution, x, of RF[y] as an interior point solution, if
xj > 0 for every j such that yj =1. Observe that, if (x∗, y∗) solves MPCC,
then x∗ must be an interior point solution to RF[y∗]. To verify, assume that
x∗ is not an interior point solution to RF[y∗]. Thus, there must exists an
index j such that x∗

j =0 and y∗
j =1. By setting ȳj =1 when x∗

j >0 and ȳj =
0, otherwise, the point (x∗, ȳ) is feasible and has a smaller objective value
because sj >0. This contradicts the fact that (x∗, y∗) solves MPCC. So, x∗

must be an interior point solution to RF[y∗]. In addition, we refer to any
(x, y) feasible to MPCC as a candidate solution if x is an interior point
solution to RF[y].

Below are two properties of MPCC relevant to the subsequent sections.
Theorem 3.2 shows that no candidate solution satisfies the MFCQ. Fur-
thermore, failing to satisfy MFCQ implies that the set of feasible KKT
multipliers at every candidate soluton is either empty or unbounded (see
Gauvin, 1977). For MPCC, Theorem 3.3 shows that the latter holds at
every candidate solution.

THEOREM 3.2. No candidate solution to MPCC satisfies MFCQ.

Proof. Recall that MFCQ at a given point (x, y) requires that there exists
a vector (d, δ) such that

Ad =0,

dj >0 if xj = 0, (3.3)

δj >0 if yj = 0,

δj <0 if yj = 1, (3.4)

(1−yj )dj −xjδj =0, for all j. (3.5)

Consider a candidate solution (x, y). For each j such that yj =0 and xj =0,

(3.3) and (3.5) reduce to dj > 0 and dj = 0, respectively. These two con-
ditions are contradictory and MFCQ does not hold. Similarly, for each j
such that yj =1, xj must be positive because (x, y) is a candidate solution.
Then, (3.4) and (3.5) imply that δj < 0 and xjδj = 0, respectively. Again,
these conditions are contradictory because xj > 0. Thus, MFCQ does not
hold. �
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THEOREM 3.3. The set of feasible KKT multipliers at every candidate
solution is unbounded.

Proof. Let (x, y) denote a candidate solution MPCC. First, consider the
KKT conditions for RF[y]. Because x solves RF[y], there exists a pair of
KKT multipliers (ρ̄, λ̄) such that

cj −aT
j ρ̄ − λ̄j =0, ∀j,

xj λ̄j =0, ∀j,

λ̄j �0, ∀j :yj =1,

λ̄j unrestricted, ∀j :yj =0,

where aj represents the j th column of A.
Consider next the following KKT conditions for MPCC at (x, y):

cjyj −aT
j ρ −λj + ξj (1−yj )=0, ∀j =1, . . . , n. (3.6)

sj + cjxj −αj +ϕj − ξjxj =0, ∀j =1, . . . , n. (3.7)

xjλj =0, ∀j =1, . . . , n. (3.8)

αjyj =0, ∀j =1, . . . , n. (3.9)

ϕj (yj −1)=0, ∀j =1, . . . , n. (3.10)

λj , αj , ϕj �0, ∀j =1, . . . , n.

At any candidate solution (x, y), there are two cases to consider: (xj > 0,
yj =1) and (xj =0, yj =0).

When xj > 0 and yj = 1, (3.8) and (3.9) imply that λj = 0 and αj = 0.

Consequently, (3.6) reduces to cj −aT
j ρ =0 and setting ρ = ρ̄, the multiplier

from RF[y], ensures that (3.6) holds. In addition (3.7) becomes

sj + cjxj +ϕj − ξjxj =0 or ξj = sj + cjxj +ϕj

xj

= cj + sj

xj

+ ϕj

xj

.

Thus (3.7) and (3.10) hold for any ϕj �0. Moreover, ξj can be made arbi-
trarily large by choosing ϕj �0 arbitrarily large.

When xj = 0 and yj = 0, (3.8) and (3.9) holds automatically and
(3.10) implies that ϕj = 0. Consequently, (3.6) and (3.7) reduce to
−aT

j ρ −λj + ξj =0 and αj = sj , respectively. The latter implies that αj is pos-
itive, thereby satisfying the nonnegative requirement. For the former, letting
ρ = ρ̄ and ξj =λj + aT

j ρ̄, for any λj � 0, ensures that (3.6) holds. As before,
the multiplier ξj can be made arbitrarily large by choosing λj �0 arbitrarily
large. In both cases, there are multipliers that can be made arbitrarily large,
i.e., the set of feasible of KKT multipliers is unbounded.
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From the above proof, the following are feasible KKT multipliers for
MPCC at a candidate solution (x, y):

ρ = ρ̄ (3.11)

λj =
{

0 if xj >0,

�0 if xj =0,
(3.12)

αj =
{

0 if yj =1,

sj if yj =0,

ϕj =
{

�0 if yj =1,

0 if yj =0,

ξj =
{

cj + sj

xj
+ ϕj

xj
if xj >0,

λj +aT
j ρ̄j if xj =0,

(3.13)

where ρ̄ is from a pair of feasible multipliers (ρ̄, λ̄) for RF[y].

4. Lagrangian Relaxation

The Lagrangian dual problem associated with MPCC is to maximize L(ξ),
where

L(ξ)=min
{ n∑

j=1

yj (sj + cjxj )+ ξjxj (1−yj ) :Ax=b, xj �0,0�yj�1,∀j
}
.

One approach for maximizing L(ξ ) is via Lagrangian relaxation, a version
of which is stated below:

Lagrangian Relaxation

Step 0: Choose ξ 1 �0 and set k = 1.
Step 1: Let (yk, xk) solve the following subproblem.

L(ξk)=min
{ n∑

j=1

yj (sj + cjxj )+ ξk
j xj (1−yj ) :Ax =b, xj �0,0�yj �1,∀j

}
.

Step 2: If ||xk – xk−1||�ε, stop. Otherwise, choose a new ξk+1 and set k=
k +1. Go to Step 1.

In Step 0, the constraint xj (1 − yj ) = 0 in MPCC can be replaced by
xj (1 −yj )� 0 because both xj and (1 −yj ) are nonnegative. Therefore, we
can choose a nonnegative ξ 1.
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The subproblem in Step 1 evaluates the (Lagrangian) dual function, L(·),
at the point ξk. Moreover, the subproblem is a disjoint bilinear program-
ming problem (see, e.g., Audet et al., 1999) that has an equivalent concave
minimization formulation (see, e.g., Benson, 1985; Thieu, 1988). Several
cutting plane and branch-and-bound algorithms (see, e.g., Konno, 1976;
Gallo and Ulkucu, 1977; Vaish and Shetty, 1977; Al-Khayyal and Falk,
1983) globally solve the bilinear problem in a finite number of iterations.

To relate Lagrangian relaxation to DSSP, consider the following heuristic
approach for the subproblem in Step 1. Initially, set yj =0 for all j . Doing so
reduces the subproblem in Step 1 to the following (restricted) subproblem:

xk =arg min

⎧
⎨

⎩

n∑

j=1

ξk
j xj :Ax =b, xj �0,∀j

⎫
⎬

⎭
.

Given xk, construct a candidate solution to MPCC by setting yk
j = 1,

if xk
j =1, and yk

j =0 otherwise. This yields a candidate solution (xk, yk) fea-
sible to MPCC.

In Step 2 of Lagrangian relaxation, ξk+1 is typically chosen to be ξk +
θkτ

k, where τ k ∈ ∂L(ξk) and θk � 0. However, if we use the above heuris-
tic, this is not possible because (xk, yk) does not necessarily solve the sub-
problem in Step 1 optimally and, therefore, does not provide information
about the subdifferential ∂L(ξk). On the other hand, (xk, yk) is a candi-
date solution to MPCC and Theorem 3.3 indicates that the KKT mul-
tipliers exist. In the MPCC literature, several (e.g., Fletcher and Leyffer,
2002; Fletcher et al., 2002) have used these multipliers in conjunction with
an SQP approach to successful solves many practical MPCC problems in
Leyffer (2000). For our case, we can choose ξk+1 from the multipliers asso-
ciated with the candidate solution (xk, yk). From (3.13), let ξk+1

j = cj +
sj

/
xk

j for each j such that xk
j > 0. This corresponds to setting ϕj = 0 and

Fletcher et al. (2002) refer to this choice of ξk+1 as ‘basic.’ For the case
where xk

j = 0, let (λk, ρk) denote the KKT multipliers associated with the
restricted subproblem. Then, ξk

j −aT
j ρk −λk

j =0 or ξk
j =aT

j ρk +λk
j . Thus, set-

ting ρ̄j =ρk
j and λj =λk

j � 0 when xk
j = 0 satisfies (3.11) and (3.12), respec-

tively. From (3.13), this choice of (ρ,λ) produces ξk+1
j = aT

j ρk + λk
j = ξk

j

when xk
j =0.

Using the heuristic to solve the subproblem and the above choice of
ξk+1, the Lagrangian relaxation becomes

Lagrangian Relaxation with Subproblem Approximation

Step 0: Choose ξ 1 �0 and set k = 1.
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Step 1: Let xk =arg min
{∑n

j=1 ξk
j xj :Ax =b, xj �0,∀j

}
. If

∥
∥xk −xk−1

∥
∥�ε,

stop and xk is an approximate solution to MPCC. Otherwise, go
to Step 2.

Step 2: Set ξk+1
j =

{
cj + sj

/
xk

j if xk
j >0

ξk
j if xk

j =0
and k =k +1. Go to Step 1.

However, the above algorithm is the same as DSSP.
When viewed in this manner, DSSP examines only candidate solutions.

It uses the KKT multipliers from MPCC at the current candidate solution
in an attempt to find an improved candidate solution by solving a corre-
sponding Lagrangian subproblem approximately. Furthermore, this obser-
vation offers a more rigorous framework for the slope updating (or scaling)
scheme that was originally motivated by Figure 1 and may explain the suc-
cess of DSSP in solving the fixed-charge problem.
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